On bounded elementary generation for SL n over polynomial rings
نویسندگان
چکیده
منابع مشابه
Bounded generation of SL ( n , A ) ( after D . Carter ,
We present unpublished work of D. Carter, G. Keller, and E. Paige on bounded generation in special linear groups. Let n be a positive integer, and let A = O be the ring of integers of an algebraic number field K (or, more generally, let A be a localization OS−1). If n = 2, assume that A has infinitely many units. We show there is a finite-index subgroup H of SL(n, A), such that every matrix in ...
متن کاملPolynomial Rings over Pseudovaluation Rings
Let R be a ring. Let σ be an automorphism of R. We define a σ-divided ring and prove the following. (1) Let R be a commutative pseudovaluation ring such that x ∈ P for any P ∈ Spec(R[x,σ]) . Then R[x,σ] is also a pseudovaluation ring. (2) Let R be a σ-divided ring such that x ∈ P for any P ∈ Spec(R[x,σ]). Then R[x,σ] is also a σ-divided ring. Let now R be a commutative Noetherian Q-algebra (Q i...
متن کاملGray Images of Constacyclic Codes over some Polynomial Residue Rings
Let be the quotient ring where is the finite field of size and is a positive integer. A Gray map of length over is a special map from to ( . The Gray map is said to be a ( )-Gray map if the image of any -constacyclic code over is a -constacyclic code over the field . In this paper we investigate the existence of ( )-Gray maps over . In this direction, we find an equivalent ...
متن کاملNote on Star Operations over Polynomial Rings
This paper studies the notions of star and semistar operations over a polynomial ring. It aims at characterizing when every upper to zero in R[X] is a ∗-maximal ideal and when a ∗-maximal ideal Q of R[X] is extended from R, that is, Q = (Q ∩ R)[X] with Q ∩R 6= 0, for a given star operation of finite character ∗ on R[X]. We also answer negatively some questions raised by Anderson-Clarke by const...
متن کاملOn Diophantine Sets over Polynomial Rings
We prove that the recursively enumerable relations over a polynomial ring R[t], where R is the ring of integers in a totally real number field, are exactly the Diophantine relations over R[t].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2018
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-018-1666-4